Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Eur J Med Res ; 27(1): 50, 2022 Apr 04.
Article in English | MEDLINE | ID: covidwho-1775349

ABSTRACT

BACKGROUND: The different clinical manifestations, from none to severe, and the variability in efficacy of SARS-CoV-2 diagnosis by upper respiratory tract testing, make diagnosis of COVID-19 and prevention of transmission especially challenging. In addition, the ways by which the virus can most efficiently transmit still remain unclear. CASE PRESENTATION: We report the case a 48-year-old man who presents primary COVID-19 pneumonia. He was initially admitted for cholecystitis but, upon review of his abdominal CT scan, a segmental zone of ground glass opacity was identified in the right lower lobe. A bronchoalveolar lavage proved positive to SARS-CoV-2 by RT-qPCR, even if he tested negative by oro-nasopharyngeal swab at admission and the day after he underwent bronchoscopy. The near absence of the virus in his saliva 2 days after, combined with a very sharp increase in salivary viral load on the third day, also rule out the possibility of prior viral replication in the upper airway and clearance. In addition, rapidly increasing bilateral alveolar lung infiltrates appeared as the upper respiratory tests begin to detect the virus. CONCLUSIONS: For this patient to have developed primary COVID-19 pneumonia, a contagious aerosol must have traveled to the lower respiratory system. This case gives indirect but compelling evidence that aerosol may spread the virus. It also highlights the limitations of oral and nasal testing methods and the importance of anatomical considerations when studying infections by SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Lung , Male , Middle Aged , Saliva
3.
J Infect Dis ; 225(5): 768-776, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1722480

ABSTRACT

BACKGROUND: We determined the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in air and on surfaces in rooms of patients hospitalized with coronavirus disease 2019 (COVID-19) and investigated patient characteristics associated with SARS-CoV-2 environmental contamination. METHODS: Nasopharyngeal swabs, surface, and air samples were collected from the rooms of 78 inpatients with COVID-19 at 6 acute care hospitals in Toronto from March to May 2020. Samples were tested for SARS-CoV-2 ribonucleic acid (RNA), cultured to determine potential infectivity, and whole viral genomes were sequenced. Association between patient factors and detection of SARS-CoV-2 RNA in surface samples were investigated. RESULTS: Severe acute respiratory syndrome coronavirus 2 RNA was detected from surfaces (125 of 474 samples; 42 of 78 patients) and air (3 of 146 samples; 3 of 45 patients); 17% (6 of 36) of surface samples from 3 patients yielded viable virus. Viral sequences from nasopharyngeal and surface samples clustered by patient. Multivariable analysis indicated hypoxia at admission, polymerase chain reaction-positive nasopharyngeal swab (cycle threshold of ≤30) on or after surface sampling date, higher Charlson comorbidity score, and shorter time from onset of illness to sampling date were significantly associated with detection of SARS-CoV-2 RNA in surface samples. CONCLUSIONS: The infrequent recovery of infectious SARS-CoV-2 virus from the environment suggests that the risk to healthcare workers from air and near-patient surfaces in acute care hospital wards is likely limited.


Subject(s)
COVID-19 , Nasopharynx/virology , Respiratory Aerosols and Droplets , SARS-CoV-2/isolation & purification , Adult , Aged , Air Microbiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Canada/epidemiology , Environmental Exposure , Health Personnel , Humans , Inpatients , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/genetics
4.
Am J Infect Control ; 49(6): 701-706, 2021 06.
Article in English | MEDLINE | ID: covidwho-1081407

ABSTRACT

BACKGROUND: Long-term care facilities (LTCF) are environments particularly favorable to coronavirus disease (SARS-CoV-2) pandemic outbreaks, due to the at-risk population they welcome and the close proximity of residents. Yet, the transmission dynamics of the disease in these establishments remain unclear. METHODS: Air and no-touch surfaces of 31 rooms from 7 LTCFs were sampled and SARS-CoV-2 was quantified by real-time reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: Air samples were negative but viral genomes were recovered from 20 of 62 surface samples at concentrations ranging from 13 to 36,612 genomes/surface. Virus isolation (culture) from surface samples (n = 7) was negative. CONCLUSIONS: The presence of viral RNA on no-touch surfaces is evidence of viral dissemination through air, but the lack of airborne viral particles in air samples suggests that they were not aerosolized in a significant manner during air sampling sessions. The air samples were collected 8 to 30 days after the residents' symptom onset, which could indicate that viruses are aerosolized early in the infection process. Additional research is needed to evaluate viral viability conservation and the potential role of direct contact and aerosols in SARS-CoV-2 transmission in these institutions.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Humans , Long-Term Care , Pandemics
5.
Emerg Microbes Infect ; 9(1): 2597-2605, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-933803

ABSTRACT

The worldwide repercussions of COVID-19 sparked important research efforts, yet the detailed contribution of aerosols in the transmission of SARS-CoV-2 has not been elucidated. In an attempt to quantify viral aerosols in the environment of infected patients, we collected 100 air samples in acute care hospital rooms hosting 22 patients over the course of nearly two months using three different air sampling protocols. Quantification by RT-qPCR (ORF1b) led to 11 positive samples from 6 patient rooms (Ct < 40). Viral cultures were negative. No correlation was observed between particular symptoms, length of hospital stay, clinical parameters, and time since symptom onset and the detection of airborne viral RNA. Low detection rates in the hospital rooms may be attributable to the appropriate application of mitigation methods according to the risk control hierarchy, such as increased ventilation to 4.85 air changes per hour to create negative pressure rooms. Our work estimates the mean emission rate of patients and potential airborne concentration in the absence of ventilation. Additional research is needed understand aerosolization events occur, contributing factors, and how best to prevent them.


Subject(s)
Air Microbiology , COVID-19/virology , Hospitals , SARS-CoV-2 , Ventilation , Adult , Aged , Aged, 80 and over , Animals , COVID-19/therapy , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL